A new symmetric fractional B-spline
نویسنده
چکیده
A new de(nition of a symmetric fractional B-spline is presented. This generalises the usual integer order B-spline, that becomes a special case of the new one. ? 2003 Elsevier B.V. All rights reserved.
منابع مشابه
Quartic and pantic B-spline operational matrix of fractional integration
In this work, we proposed an effective method based on cubic and pantic B-spline scaling functions to solve partial differential equations of fractional order. Our method is based on dual functions of B-spline scaling functions. We derived the operational matrix of fractional integration of cubic and pantic B-spline scaling functions and used them to transform the mentioned equations to a syste...
متن کاملB-Spline Solution of Boundary Value Problems of Fractional Order Based on Optimal Control Strategy
In this paper, boundary value problems of fractional order are converted into an optimal control problems. Then an approximate solution is constructed from translations and dilations of a B-spline function such that the exact boundary conditions are satisfied. The fractional differential operators are taken in the Riemann-Liouville and Caputo sense. Several example are given and the optimal err...
متن کاملBiorthogonal cubic Hermite spline multiwavelets on the interval for solving the fractional optimal control problems
In this paper, a new numerical method for solving fractional optimal control problems (FOCPs) is presented. The fractional derivative in the dynamic system is described in the Caputo sense. The method is based upon biorthogonal cubic Hermite spline multiwavelets approximations. The properties of biorthogonal multiwavelets are first given. The operational matrix of fractional Riemann-Lioville in...
متن کاملConstruction of fractional spline wavelet bases
We extend Schoenberg's B-splines to all fractional degrees α > − 2 . These splines are constructed using linear combinations of the integer shifts of the power functions x+ α (one-sided) or x * α (symmetric); in each case, they are αHölder continuous for α > 0. They satisfy most of the properties of the traditional B-splines; in particular, the Riesz basis condition and the two-scale relation, ...
متن کاملFractional Splines and Wavelets
We extend Schoenberg’s family of polynomial splines with uniform knots to all fractional degrees α > −1. These splines, which involve linear combinations of the one-sided power functions x+ = max(0, x) α, are α-Hölder continuous for α > 0. We construct the corresponding B-splines by taking fractional finite differences and provide an explicit characterization in both time and frequency domains....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 83 شماره
صفحات -
تاریخ انتشار 2003